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SUMMARY _ _

Advances in semiconductor technology have made it possible to introduce
increasingly complex digital logic in avionics, weapons and control
systems. However, the testing of such systems represents a new
problem. Test requirements of missile systems are now approaching the
complexity of aircraft themselves a decade ago. The costs of creating
test procedures for the new designs will be prohibitive if new methods
of test generation are not developed.

In the early 1970's, simulation methods were developed to generate test
patterns on computers to increase productivity. These methods, e.g.,
'LASAR','FAIRTEST', etc. were used successfully to support the A7-D/E
and the S3-A aircraft test development needs. These methods have been
also used to develop tests for E3-A, B-1 Avionics and IUS programs at
Boei ng.

As useful as these methods are, the computer costs for test generation
are becoming high. Also, the time required to create computer models
needed to support the test generation process itself has become very
long. It has been estimated that to develop gate-level models for off
the shelf LSI (Large Scale Integration) microprocessors and similar

* devices would take a man-year. Since the development phases of such
programs are a year or less, the methods which worked so well in the
past are not keeping up with the new requirements.

At Boeing, research in the test development area has been directed at
developing new approaches that are applicable to the new technology.
The most promising approach is based on the use of algorithmic test

Y generation techniques instead of the classic truth table methods.

> Using algorithms as the source for test code, it is not necessary to
0... store millions of test vectors in a tester or to run costly simulations
C)'4r to generate the test vectors.

Lij 'This paper reports on a demonstration of the application of the method
._j to generate system level tests for a typical tactical missile
I autopilot. The test algorithms are based on the autopilot control law.

When loaded on the tester with appropriate control information, the
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complete autopilot is tested to establish if the specified control law
requirements are met. Thus, the test procedure not only checks to see
if the hardware is functional, but also checks the operational
software. The technique also uses a 'learning' mode to allow minor
timing or functional deviations from the expected responses to be
incorporated in the test procedures.

A potential application of this test development technique is the
extraction of production test data for the various subassemblies. The
technique will 'learn' the input-output patterns forming the basis for
development and production tests. If successful these new techniques
should allow the test development process to keep pace with
semiconductor progress.,

INTRODUCTION

Technology advances in semiconductor design and manufacturing
techniques have node the miniaturization of high peformance systems a
practical and economical concept. The replacement of marginal and
sensitive analog hardware, such as servomechanisms and potentiometers
in computing circuits, with digital processing circuits has impacted
all aspects of electronic products. The result is the emergence of a
whole new generation of 'smart' instruments. The commercial success of
electronic games, etc., is a testimonial to the cost-effectiveness and
versatility of the new digital techniques.

The application of this technology to low cost digital autopilots for
small, highly accurate, terminally-guided missiles is particularly
advantageous. A reliable low cost 'smart' missile which is field
adaptable to a broad range of threats could be the ultimate next
generation field weapon.

However. it is not enough for a systemto be constructed from low cost
parts and be functionally versatile. The system must be nanufacturable,A4 to assure low cost, and, more importantly, field supportable to achieve
its potential as a weapon.

Unfortunately, systems based on microprocessor technology present new
problems in developing effective production test procedures using

* traditional methods. The problem lies in the very advantages of such
* systems, le., the ability to change the system programming to meet new

requirements without changing the hardware. As the software changes are
made, the test procedures must likewise be modified. It is imperative
that the system test procedures be capable of being modified as rapidly
and effectively as the microprocessor software.

In this paper the traditional test approaches are reviewed as to their
adequacy in meeting the new requirements, and a new approach,
algorithmic test generation, will be outlined. This approach shows
promise in answering these new requirements. An example of algorithmic

jtest generation will be developed to illustrate the development of test
algorithms from system level design data.
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STATE OF THE ART IN DIGITAL TEST DEVELOPMENT

Early test generation methods in the vacuum tube era were based on
signal tracing techniques using scopes and waveform diagrams. Standard
input signals were generated and data flow was manually traced from
input to output. With good access to the vacuum tube sockets, the test
procedures were easy to develop and use.

With the advent of integrated circuits, the simple signal tracing
concepts were more difficult to document and the inability to trace the
signals internal to the chip nude the mechanics of signal tracing
peculiar to the individual design approaches. This meant that the
maintenance personnel had to be trained to diagnose each peculiar
system. c

At that time the concept of developing tests for digital logic to
detect logic faults was developed. (1) The stuck-at-one, stuck-at-zero
fault concept was introduced and computer simulation methods were used
to evaluate test sequence effectiveness.

Following the development of simulators, various methods for automatic
test generation were developed. One of the first applications of such
techniques was the development of tests for the A7-D/E aircraft
avionics and its peculiar ground support equipment (PGSE).

For example, in this application [2] the logic schematics were encoded
(Figure 1) as the source data for the logic simulation and test
generation process. Figures 2 and 3 are a listing of the input code
needed to generate tests for the unit. Figure 4 is the test sequence
generated for the schematic and Figure 5 is the report of the test
effectiveness for that test sequence. The test patterns are then
converted to the ATE (automatic test equipment) source code and are
ready for use on the ATE.

A Such methods have been applied very successfully in the last decade on
a nuner of aircraft programs. Boeing programs have nde extensive use
of various commercial test generation techniques as have virtually all
major avionics manufacturers.J3) The military depots have, in like
manner, used these techniques and have reported order of magnitude cost
reductions over manual techniques. [4]

Since, the advent of LSI and VLSI (very large scale integration)
technology and the application of microprocessors in systems, it has
become increasingly difficult to develop the necessary simulation
models needed to generate tests. The computer and nodel development
costs can exceed the value of the equipment itself.

Because of the dynamic state of development in the semiconductor
industry, models developed for simulation and test generation can
become obsolete before the models can be developed and validated. In
the past, once a "74/540 series part-library was developed, few changes
were needed and the modeling costs could be written off against mny
users. In the current VLSI state of affairs, for custom designs, models
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will probably be used only once, resulting in high set-up costs for
test generation as well as expensive computer runs due to the.large
nunber of gates needed in the models.

Aside from the cost and modeling difficulties for. the new
microprocessor based designs, there is some question of the adequacy of
the tests developed using the stuck fault concept.

Most test generation techniques are designed to develop static tests
only. These simulators only approximate the time domain behavior of
logic gates. Since 30 to 40 percent of the failure modes in VLSI are
dynamic in nature, a test generation program reporting 100% of the
"stuck-at" faults detected is probably only 70% effective for the total
fault universe. This means that the remaining untested faults must be
detected and isolated at the next higher assembly level. The usual
symptom of such a problem is that the UUT (unit under test) wi1 work
in one sytem but not another. But when returned for test on the ATE,
it always passes the test.

There are two other considerations for microprocessor systems that are
unique. Such a system can be tested to exhaustion at the part level and
subassemly level but yet fail in the system. Because microprocessor
systems consist of hardware and firmware, testing the hardware and
firmware independently does not mean that when the two are integrated
the system will function as expected. Microprocessors exhibit failure
modes, called pattern sensitivity, which are dependent upon the
instruction sequence executed. Thus if two programmers were to write
code for the same application, it is possible that one program could
function normally and the other fail due to the peculiar sequence of
instructions used by one programmer's code and not by the other.

For these reasons the built-in test concept, where the microprocessor
exercises itself with a stored program, can only check out a fraction
of the total failure modes.

Th. ideal approach is one where a complete checkout of the hardware and
firmware, within the context of a dynamic test, can be performed.
Further, the test generation technique should be capable of rapid
modification as the system design matures, and be inexpensive to
implement. Hopefully It would be a natural extention of the normal
system synthesis and engineering process. The algorithmic test
generation procedure is an approach which can meet these goals for a
large class of systems.

ALGORITHMIC PATTERN GENERATION

Algorithmic pattern generators have found wide spread use in memory
testing. Because of the highly ordered structures of memories, the

* ,;efficiency of testing is greatly improved by using special hardware
pattern generators instead of the classic truth tables. With the
introduction of progranmmable pattern generators, millions of tests can
be generated from a few input parameters. This also obliviates the need
to store the truth tables in expensive ATE.
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As an example, to keep pace with memory development, a number of
algorithms have been developed, le., "ping-pong", "butterfly", etc.
Such techniques have reduced the cost of test equipment and mde it
possible to effectively test the most complex memories with a minimum
of set-up costs. However, because of the differencesin the design and
manufacturing methods of memories, there is still no single completely
accepted sequence of test algorithms available to completely test a
particular semiconductor memory part.

The algorithms needed to perform a specific type of test for memories
are well-known. For the type of systems under consideration, le.,
real-time microprocessor based control systems, no general pattern
generation techniques have been developed to date. Most of the test
procedures are based on exercising the instruction set of the
microprocessor, or a simple Input/output wrap-around test.

For the class of applications that are describable by transfer
functions, it is possible to generate a set of algorithms that can
create test patterns in a manner similar to that described for memory
tests. Further, these patterns are dynamic in nature, and can be used
to checkout the hardware and firmware to certify it's integrated
adequactly for a particular application.

The advantage of algorithmic approach is that faults in the system
which have no effect on the intended use do not cause the unit to fall
the test. For example, if a particular instruction of a microprocessor
was faulty but it is not used, the fault is a 'don't care' fault. (If
two programs were written for the same application and one programmer
used the faulty instruction and the other did not and there were no
coding errors, one would pass the test, the other would fail.) In like
manner, if a memory cell were faulty and It was never used, the fault
would be a 'don't care'. If the "stuck-at" test concept were used to
develop tests, a useable unit could be rejected even though it could
adequately perform the Intended mission. Such rejections tend to
increasn the overall cost of systems.

The algorithmic test pattern generation concept tests the suitability
of the total system for an application, including real time software
and hardware performance. However, since the test procedure is
application dependent, it does not assure the hardware is adequate for
other uses. An advantage of the technique is that it is not difficult
to synthesize the algorithms needed to create the desired test patterns4for subsequent users.

ALGORITHM SYNTHESIS

Systems are frequently described in block diagram form with transfer
functions as shown in Figure 6. Generally the system under test (SUT)

, : .and the "plant" or the controlled object are easily partitioned into
~ I/ independent and distinct transfer functions. For example, if the

controller is digital, the transfer functions are usually represented
, in 'Z- Transform' form and the 'plant' in conventional LaPlace

transforms. Generally, the systems analysis activities have developed

numerical simulation equations for the system. But these are usually
too complex or more detailed than needed for this application.
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The first step of the process is to convert the SUT transfer functions
into difference equations. These equations will be used to develop the
outputs of the SUT, given the inputs. Since the Z-Transform parameters
contain the sampling rate, the test rate is constrained to be that used
in generating the Z-Transforms..

If the SLIT transfer functions are LaPlace transforms, they must be
converted to Z-Transforms. Generally, the step-invariant transform will
provide an exact time-domain solution for most situations. The

rocedure for performing these mathematical operations are well-known.

The difference equations developed at this step mu't be exact, because
they form the basis for the algorithms that will generate test patterns
for the SUT. The algorithms will probably generate test patterns more
precise than those implemented in the microprocessor program itself, so
the test procedure provides a quality control measure for the numerical
methods used in the software. Such a quantitative measure is a valuable
by-product of this testing approach.

Since the SLIT generally has dynamic feedback signals from the plant
being controlled, its transfer functions must likewise be translated
into difference equations. These equations will generate the necessary
feedback signals needed to dynamically test the SLIT in the feedback
l oop.

However, these equations or models need not be as precise as those for
the SLT, but need only be a reasonable approximation of the environment
the SUT drives. Thus, in many situations the classic underdamped
quadratic transfer function can be replaced by a single low-pass pole.
Since stability analysis is not the goal, but rather the generation of
feedback signals, such approximations greatly simplify the synthesis of
the test generation algorithms without reducing the validity of the
test procedure.

AN EXAMPLE

Figure 7 is a block diagram of an autopilot of an experimental missile,
* :I the T6. The T6 airframe is a 70 pound modular test vehicle designed to

accept a variety of six inch diameter seekers. The T6 autopilot is
typical of the type of real-time control system amenable to algorithmic

*test generation techniques.

For purposes of illustration the pitch channel will be used in the
example, but the method can readily be extended to include all the
channels and modes of operation. Figure 8 is a block diagram of the
pitch channel of the autopilot. The first block is the pitch
contoller, the second block the actuator controller. Both of these
functions are contained in the microprocessor software and are the

2 ]objects of the test procedure. The other blocks are the missile fin
actuator and the missile aerodynamics. The feedback to the autopilot is

" via a gyro which is assumed to have the transfer function of an
integrator.
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An algorithm for the first block is developed in equation (1) by
expanding the Z-transform into a difference equation in the usual
manner. The limiters are coded as shown in equation (2) and in like
manner the actuator is expressed as shown in equation (3).

R(lI)-[C( I)-S(I) 3+( 1-. glS2)*[C(I-1) -S( I-1 )3-O.9l82*[C( I-2)-

S(I-2)]-(.6434-.2302)*R(1-1)+(.2302)*( 6434)*R((-2) ().

IF R(I)>16/.18 THEN R()-16/.18 (2).

IF R(1)<-16/.18 THEN R(I)=-161.18 (3).

A(lI)=R( I)-V(lI)-. 667"[ R( 1-1 )-F( 1-1)] (4).

A(I)..2184*A( I) (5).

IF A(I)>22.5/.18 THEN A(I).22.5/.18 (6).

IF A(I)<-22.5/.18 THEN A(I)--22.5/.18 (7).

F(I)-.6*A(I)-.4*F( I) (8).

C ( I) K*E*F ( I)+2*F*C (1- 1 )-G*C (I-2) ( 9).

Since the objective of the test is to checkout the autopilot hardware
and software, a single pole low pass filter is used to represent the
actuator in equation (8). A quadratic transfer function in equation
(9) is derived from the Z-transform of the LaPlace transfer function.
An integrator is used to approximate the missile aerodynamics.

The scale factors are important (0.18 deg./LSB in the example) since
these values are used to define the val-ue of the least significant bit
of the data generated by the tester. With the gains fixed as shown for4the test procedure, the scale factors for the inputs and outputs are
easily calculated

To checkout the algorithms they are converted to a BASIC program and

run on a computer. A listing of the program is provided in Figure 9,
and the response to a step input is shown in Figure 10.

Once checked out using the BASIC program, the equations need to be
modified slightly to be in the source language of the target tester.
For this example the test system is Boeing's Sentry VIII test system
(Figure 11). The source language is FACTOR, an ALGOL-type language. The
conversion to FACTOR is a simple procedure.

* 1 To develop the detailed test program the microprocessor hardware
interface must be defined. In this example an 8 bit data bus, one bit
hold, and ready control are assummed. It should be understood that the
detailed design of the particular SUT establishes the definitions. All
inputs and outputs are multiplexed on the system data bus.
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The first step is the definition of the input/output pins of the SUT.
Also control pins are established along with the input output sequencer
signals and the data bus control lines. The test rate is set -up by
tester commands in the manner peculiar to the individual tester The
tester driver is on when the "DA" command is active, off when the "DB"
command is active. The tester is checking the output data when the "MA"
is set and ignoring data when the "MB" is set. In the FACTOR code
"DUT(DADB)=1" means the "DB" is set. "DUT[DADBJ-O" means the "DA" is
set. In like manner, "DUT[MAMB]-O" means the "MA" is set and
"DUT[MAMB)=1" means "MB" is set. Other testers will use similar
techniques, but it it important that these functions be performed in a
dynamic manner (on-the-fly) otherwise the test data will not be vaild.

The FACTOR source code is shown in Figure 11, and a compiled listing in
Figure 12. The generated test code is shown in Figure 13. It should be
noted that the actual code is significantly longer and only a small
portion of the actual code is printed.

GENERALIZATIONS & CONCLUSIONS

The algorithms developed in the example were selected to illustrate the
techniques of "algorithmic pattern generation" and only illustrate one
of many possible approaches to modeling systems for test generation
purposes. The recursive difference equation, based on the Z-Transform
calculus, has many advantages in that the theory is highly developed,
and is a very natural way to develop a dynamic test.

Those versed in simulation art will find many ways to construct
algorithms that do not require transfer functions or the linear system
assumptions.

The nature of the algorithms is constrained to a degree by the target
tester. The system used in the example, the Sentry VIII manufactured by
Fairchild, is particularly easy to use to create test algorithms. The
utility program "LMLRN" handles many of the tester control functions in
a very simple manner. Other testers may require an additional
processing step to perform the test control generation function.

Although not mentioned in the example, it is feasible to expand the
input/output definitions (pin lists) and 'learn' the test data at the
subassembly levels to form the basis for developing production and
field support tests. The tester control functions for such an
application would be significantly more complex, but with careful
design of the subsystem interfaces, the process can be made very
productive.

The approach outlined is compatible with the normal systems engineering
approach. Simulation models used to support systems analysis activities

* are directly applicable to the test generation process. However,
further research and analysis is needed to define the adequacy of test

J procedures developed using functional approaches instead of the classic
stuck-at" methods. The acceptance of equipment with possible

manufacturing defects, even though the defects do not impact the
intended function, presents certain cultural problems to a quality
assurance operation, le. "Zero-Defects".
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CONTROLLER "PLANT"

SYSTEM UNDER

TEST (SUT)

"MICROPROCESSOR)_

4f Figure 6. Block Diagram- Typical System
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* Figure . Block Diagram of Pitch Channel
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FIGURE 9 "BASIC" SOURCE CODE FOR TEST ALGORITHM CHECKOUT

1 REM *****************************************************

2 REM DEFINE SIMULATION VARIABLES
3 REM
4 REM R-AUTOPILOT CONTROLLER OUTPUT
5 REM CMISSILE FEEDBACK
6 REM A-ACTUATOR CONTROL SIGNAL
7 REM F-FIN FEEDBACK SIGNAL
8 REM S-COMMAND INPUT
9 REM
10 DIM R(3),C(3),A(3),F(3),S(3),X(3)
20 REM
30 REM INITIALIZE ALL VARIABLES
40 REM
50 MAT R-ZER
60 MAT C-ZER
70 MAT A-ZER
80 MAT FZER
90 MAT S-ZER
95 MAT X-ZER
100 REM **********************************************
110 REM SIMULATION OF CONTROLLER USING DIFFERENCE EQUATIONS
120 REM
150 REM
160 I-3
200 FOR J-1 TO 100
205 IF J-3 THEN S(3)-10
210 R( I)-C( I)+.0818"C(1-)-.9182"C(I-2)-.4132"R(1-1)+.1481"R(I-2)
250 REM
260 REM *********************************** ********
270 REM GAIN AND LIMIT CALCULATIONS FOR CONTROLLER
280 REM ********-- -- -- ******** **** *
290
320 IF R(I)>16/.18 THEN R(I)a16/.18
330 IF R(I)<-16/.18 THEN R(I)--16/.18
340 REM
350 REM ***************************************************
360 REM ACTUATOR DIFFERENCE EQUATIONS
370 REM
380 REM
400 A(1)-R(I)-F(I)-.667"(R(I-1)-F(I-I))
410 A(I)-.2184*A(I)
405 REM ********************************* -***** -*
406 REM ACTUATOR GAIN AND LIMIT CALCULATIONS
407 REM ***************************************************
420 IF A(I)>22.5/.18 THEN A(I)-22.5/.18
430 IF A(I)<-22.5/.18 THEN A(I)--22.5/.18
440 REM
450 REM
450 REM FIN SERVOCALCULATIONS
470 REM
480
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480 REM
500 F(I)-.6*A(1)-.4*F(I)
510 REM
520 REM ***************************************************
530 REM MISSILE FLIGHT CALCULATIONS
531 REM
532 REM MISSILE NATURAL FREQ."120 RADIANS/SEC.
533 REM
534 REM MISSILE DAMPING FACTOR -.7
535 REM
536 REM GAIN CONSTANT a .2
540 REM **************************************************
550 REM
560 K-1.24882
570 E-.313568
580 F-.458459
590 G-.30851
600 C(I)-.2*K*E*F(I)+2*F*C(I-1)-G*C(I-2)
605 X(I)-.2*C(I)+X(I)
606 C(I)-S(I)-X(I)
610 REM
620 REM *******************************************
630 REM TUMBLE VARIABLES
640 REM
650 REM
655 PRINT USING 741;J,S(3),X(3),R(3),A(3),F(3),C(3)
660 R(1)"R(2)
670 R(2)=R(3)
680 C(1)-C(2)
690 C(2)-C(3)
700 A(1)-A(2)
710 A(2)-A(3)
720 F(1)-F(2)
730 F(2)-F(3)A 741 IMAGE 7(XDDD.DX)
800 NEXT J
9000 END

p

-' Page 19

...



w
SI

S.

0z

zo

wz
z

5-

w
-J
0

z
U.

i

r

I Ps Page 20



FIGURE 11 ALGORITHMIC TEST PATTERNS FOR SENTRY VIII TESTER

SET PAGE 4095;

REM ********************************************
* SET UP PIN DEFINITIONS FOR ALGORITHMIC *
* TEST PATTERN GENERATION *

DCL PDATA<8>/1O,11,12,13,14,15,16,17/;
DCL PHLD<I>/5/;
DCL PRDY<I>/3/;

DCL DUT<5>;

DATA=1;
HLD-2;
RDY-3;

DADB-4;
MAMB=5;

EXEC LMI4OD(O); REM INITIALIZE TESTER FEMORY;

EXEC LMLRN(IPDATAPHLD,PRDY,1,2);

REM SET UP PIN DEFINITIONS IN TESTER;

* DEFINE SIMULATION VARIABLES *

DCL R<3>;
DCL C<3>;
DCL A<3>;
DCL F<3>;

, DCL S<3>;
DCL X<3>;

* SIMULATION OF CONTROLLER USING DIFF. EQU. *

1-3;
DUT<HLD,-O; REM START PROCESSOR;
DUT<RDY>m;
DIT<DADB>-O;
DUT<KW>-I;

EXEC LMLRN(4,M,DUT); REM GENERATE A TEST;
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M=M+1; REM TEST NUMBER COUNTER;

FOR J1l THRU 100 DO BEGIN
IF J EQ 3 THEN S<I>=1O;

*GAIN AND LIMIT CALCULATIONlS*

IF R<I> GT 16/.18 THEN R<I>-16/.18;
IF R(I> LT -16/.18 THEN R<I>3-16/.19;

*ACTUATOR DIFFERENCE EUAT IONS*

A<I>R<I-F<I-.67*(RI-I-F<11>3

A<I>-.2184*A<I>;

*ACTUATOR GAIN AND LIMIT CALCULATIONS*

IF AI> T 2.5/.8 TEN <I>=2.5.18

IF A<!> LT -22.5.18 THEN AI>22.5.18;

* FIN SERVO CALCULATIONS

*MISSILE FLIGHT CALCULATIONS*

*NATURAL FREQUENCY- 120 RADIANS/SEC.*

DAMPING FACTORs.7

GAIN-.2*

L-1.24882;
* d EnO. 313568;

F=.048459;
G-0.30851;

X<I>-.2*C<I>4X<I>;
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* TUMBLE VARIABLES *

R<I>aR<2>;
R<2>-R<3>;
C<1>'C<2>;
C<2>=C<3>;
A<I>=A<2> ;

A<2>"A<3>;
F<I>=F<2>;
F<2>=F<3> ;

* INPUT/OUTPUT SEQUENCES *

* 1) INPUT COMMAND (TESTER DRIVES BUS) *
* 2) FIN COMMAND (SUT DRIVES BUS) *
* 3) FIN FEEDBACK (TESTER DRIVES BUS) *

* 4) GYRO FEEDBACK (TESTER DRIVES BUS) *

REM INPUT 1'ST INPUT PATTERN;

DVT<DATA>=S<I>/.18 AND 377B; REM RESCALES AND COVERTS
DUT<DADB>=O;
DUT<MAMB>=1; REM TESTER INPUTTING DATA ON THE BUS

TO AN INTEGER NUMBER;

EXEC LMLRN(4,M,DUT); REM GENERATES A TEST;

M=M+I;

REM OUTPUT ACTUATOR COMMAND;

DUT<DATA>-A<I>/.18 AND. 377B;
DUT<DADB>=I;
DUT<MAMB>=O; REM TESTER LOOKING AT DATA ON BUS;
EXEC LMLRN(4,M,DUT);
M=M+1;

REM INPUT FEEDBACK FROM FIN SERVO;

DUT<DATA>=F<I>/.18 AND 377B;
DUT<DADB>=D; REM TESTER DRIVES THE BUS;
DUT<MAMB>=1;
EXEC LMLRN(4,M,DUT);
M-M+1;

REM INPUT GYRO FEEDBACK;

DUT<DATA>-C<I>/.18 AND 3778;
EXEC LMLRN(4,M,DUT);
M-M+1;

END; REM END OF FOR LOOP;
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END; REM END OF TEST PROGRAM;
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00*0 FAIRCHILD FACIOR COMPILER REL: 3. 1
*@ SOURCE FILE: *ED DATE: 00

0 DATA FILE: TIME: 00:35 **
00 SYSTEM COr: S "Vi P"U4 COND: 00000000 0

1 SET PAGE 40951
2
2 REM 00000.***.*00000000000000000000000000000000000
2 * SET UP PIN DEFINITIONS FOR ALGORITHMIC 0
2 * TEST PATTERN GENERATION 0
2
2
2 DCL PDATA[89/I0, 11, 12, 13, 14, 15, 16, 17/1
3 DCL PHLD[13/5/i
4 DCL PRDYCII/3/i
5
5 DCL DUTE53
6

8 DATAI-I
7 HLD-21
a RDY-31
9 DAD-4i

10 MAMB-5
i1
11 EXEC LMMOD(O)j REM INITIALIZE TESTER MEMORY
12
12 EXEC LMLRN(I,PDATAPHLDPRDY, 1.2)1
13
13 REM SET UP PIN DEFINITIONS IN TESTER;
13
13 REM.00000000000000000000000000000000000.Oooo
13 0 DEFINE SIMULATION VARIABLES 0

13 *o*00000••0000•004000000004*o4.oo..ooe oo.00,
13
13 DCL R[33;
14 DCL CC33i
i DCL A33j
16 DCL FE331
17 DCL SC33s
is DCL XC33i

19'

!9 0 SIMULATION OF CONTROLLER USING DIFF. EOJ. •

19
19
IT I"3A

20 DUTIH.D3-O REM START PROCESSOR
21 DUTCRDYI-Ij
22 DUTCDADBIO
23 DUTMAMBIB"1
24
24 EXEC LMLRN(4.M.DUT)i REM GENERATE A TEST.
25
25 ,1-M+1 REM TEST NUMBER COUNTER.
26

26 FOR J-1 THRU 25 DO BEGIN
27 IF J EQ 3 THEN SCIwI0;
2,
29l RE I -,C[ I 3. OBI8eCrI-13-. 9182*C[ 1-23-. 41320R[ I-3

30 +. 14SIOR[1-23i

.4 30

Figure 12. Compile Source Code
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30 V AIN AND LIMIT CALCULATIONS

30
30
30 IF RCI2 OT 16/. 18 THEN REI2-14/. IS,
32 IF Pri2 LT -26/. 13 THEN RI-1/ 9
34
34
34 0ACTUATOR DIFFERENCE EUATIONS
34
34
34 AC 12-RC 12-PCI -. 667*(ftCI-1 2-FCI-12),
35 A[I32.2J4*A1I2
36
36
36 C*ACTUATOR CAIN AND LIMIT CALCULATIONS
36
36
38 IF ACI2 CT 22. 5/. 16 THEN AC 12-22. 5/.18ia
38 IF ArI2 LT -22. 5/. 18 THEN AEI2--22. 5/. 13,
40
40
40 *FIN SERVO CALCULATIONS
40
40
40 FEI2-.6*ACI)-. 4*FEI2.
41
41
41 0MISSILE FLIGHT CALCULATIONS
41 0

41 *NATURAL FREQUENCY- 120 RADIANS/SEC.
41
410
41 0DAMPING FACTOR-.7
41
41 G AIN-.2
41
41
41 KiI. 24892i
42 E-O. 313568i
43 L-0. 458459.
44 9-0. 308511
45
45 CC13-. 2.K.E*FEI)22L*CEI-13-CEI-23a
46 XCI)-.2*CCI3+XEI2.
47 CC13-SI12-XCII2
43
43
48 *TUMBLE VARIABLES
46
48
48 RCI2-RC23s
49 RC(23-R[32a
50 CCL2-CC22.
51 CC22-CC3]s
52 ACI2-AC23s
53 A[22-AE33i
54 FCI3-FC23#
55 FC22-FC32a
56

4 56 &RITE(POD)RE32C33,AC33,FC32.AE32/.1S AND 3773. (AE3]/. 19) AND 3
7791

57
57 0INPUT/OUTPUT SEQUENCES

Figure 12. Compile Source Code (Continued)
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57 0 1) INPUT COMMAND (TESTER DRIVES B3U )
57 0 2) FIN COMMIAND (SUT DRIVES BUS) *
57 0 3) FIN FEEDBACK (TESTER DRIVES BUS)
57 9 4) GYRO FEEDBACK (TESTER DRIVES BUS) 0

57 *0000000000009000*.o~oooooooe4..ooo,
57
57 REM INPUT I '3T INPUT PATTERNS
57
57 DVTDATA3-S[II/. 10 AND 3771 REM RESCALES AND COVERTS
58 DUTCDADDIO.
56 DUTEMAMBI-I# REM TESTER INPUTTING DATA ON THE BUS
59 TO AN INTEGER NUMBERS
9.
)9 EXEC LMLRN(4.MDUT)s RE" GENERATES A TESTS
60 1MM+ 1
61

61 REM OUTPUT ACTUATOR COMMANDS
61
61 DUTEDATA3-A[Il/. 13 AND 37731
62 DVTEDADB3-Ij
63 DUTCCWMBI-Oj REM TESTER LOOKING AT DATA ON BUSS
64 EXEC LMLRN(4,M.DUT)i
65 H-M4+1
66

66 REM INPUT FEEDBACK FROM FIN SERVOS
66

66 DUTtDATA2-FEIIf. 19 AND 377B
67 DUTgD)ADB3-O REM TESTER DRIVES THE BUSS
68 DUTrMAM3-1
69 EXEC LM1LRN(4,MDUT)i
70 #1-N.1.
71
71 REM INPUT GYRO FEEDBACKS
71
71 DUTEDATA2-CCI/. 18 AND 3773s
72 EXEC LMLRNf4, M. DUT)s
73
74 ENDS REM END OF FOR LOOPS
74
74 ENDS REM END OF TEST PROGRAS

0 COMPILATION ERRORS, 74 STATEMENTS

Figure 12. Compile Source Code (Concluded)
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0 SET F DA MR 0010000000 0000000000 0000000000

4ETF DD MAB0010000000 0000000000 0000000000
3 SET F DA MA 0010000000 0000000000 0000000000
4 SET F DA MB 0010000000 0000000000 0000000000
7 SET F DA MB 0010000000 0000000000 0000000000
& SET F DA MA 0010000000 0000000000 0000000000
7 BET F DA MR 0010000000 000000000 0000000000
0 SET F DA MA 0010000000 0000000000 0000000000
9 SET F DA MR 0010000000 0000000000 0000000000
12 SET F DA MA 0010000000 0011200000 0000000000
13 SET F DA MD 0010000000 0000000000 0000000000
14 SET F DA MA 0010000000 0011000000 0000000000
13 SET F DA MB 0010000000 0011100000 0000000000
14 SET F DA MD 0010000001 0110100000 0000000000
17 SET F DA MR 0010000000 00110000000 0000000000
16 SET F DA MB 0010000001 00110100000 0000000000
17 SET F DA MB 0010000000 0011100000 0000000000
12 SET F VA MA 0010000001 0011100000 0000000000
1 SET F DA MD 0010000000 0101111000 0000000000
22 SET F DA MA 0010000000 1010100000 0000000000
23 SET F DA MR 0010000001 0010100000 0000000000
24 SET F DA MD 0010000000 10100100000 0000000000
23 SET F DA MD 0010000000 1010000000 0000000000
26 SET F DA MA 0010000001 00100000 0000000000
27 SET F DA MD 0010000000 001110000 0000000000
28 SET F DA MA 0010000000 0011100000 0000000000
27 SET F DA MD 0010000000 0011111000 0000000000
2 SET F DA MA 0010000000 000100000 0000000000
2 SET F DA MD 0010000000 1000100000 0000000000
32 SET F DA MA 0010000000 0111000000 0000000000
33 SET F DA MR 0010000000 0100000000 0000000000
34 SET F DA MA 0010000000 0111000000 0000000000
33 SET F DA Hs 0010000000 011100000 0000000000
34 SET F DA MA 0010000001 001110000 0000000000
37 SET F DA MB 0010000000 0111111000 0000000000
39 SET F DA MA 0010000000 011000000 0000000000
39 SET F DA MR 0010000001 0011000000 0000000000
34 SET F DA MA 0010000000 001101000000 0000000000
34 SET F DA MD 0010000000 0000000 0000000000
42 SET F DA MB 0010000001 1101000000 0000000000
43 SET F DA MD. 0010000000 11100000 0000000000
44 SET F D MA 0010000000 001110000 0000000000
43 SET F DA MB 0010000000 0011111000 0000000000
44 SET F DA MB 0010000000 0101000000 0000000000
47 SET F DA no 0010000000 001000000 0000000000
46 SET F DA MA 0010000001 0001000000 0000000000
47 SET F DA MB 0010000001 0000000000 0000000000
4 BET F DA MA 0010000001 0001000000 0000000000
49 BET F DA MB 0010000001 0011100000 0000000000
52 SET F OA MA 0010000001 111000000 0000000000
53 BET F VA MR 0010000001 1111111000 0000000000
54 SET F DA MA 0010000001 1110000000 0000000000
55 SET F DA MO 0010000001 00111000000 0000000000
56 SET F VA MA 0010000000 001110000000 0000000000
57 SET F VA MD 0010000000 0000000000 0000000000

. 56 SET F DA MB 0010000000 0000000000 0000000000
59 SET F DA MB 0010000000 00111000000 0000000000
56 SET F DA MA 0010000000 00110000000 0000000000
61 SET F DA MD 0010000000 000000000 0000000000

,60 SET F DA MR 0010000000 0110000000 0000000000
S ,61 SET F DA MB 0010000000 0011100000 0000000000

Figure 13. Resulting Test Sequence
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